Медицинский сайт
  • Главная
  • Анализы
  • Температурная зависимость электропроводности собственных и примесных полупроводников. Определение ширины запрещенной зоны из температурной зависимости электропроводности полупроводников Температурная зависимость электропроводности в широком интервале темп

Температурная зависимость электропроводности собственных и примесных полупроводников. Определение ширины запрещенной зоны из температурной зависимости электропроводности полупроводников Температурная зависимость электропроводности в широком интервале темп

Закон Ома в дифференциальной форме

содержит удельное сопротивление или удельную электропроводность . Удельное сопротивление характеризует преобразование энергии электрического тока в теплоту. Плотность тока в металле

, (35.3)

где – концентрация электронов проводимости, – элементарный заряд, – средняя скорость направленного движения электронов, – подвижность электронов проводимости, равная средней скорости направленного движения, приобретаемой электронами под действием электрического поля единичной напряженности. Из (35.2) и (35.3) получаем

. (35.4)

В металлах подвижность электронов с повышением температуры уменьшается, так как в результате возрастания амплитуды тепловых колебаний атомов электроны чаще с ними сталкиваются, а поэтому между столкновениями ускоряются внешним полем до меньших скоростей. Концентрация электронов проводимости в металлах от температуры не зависит. Поэтому с повышением температуры удельная электропроводность металлов уменьшается, а удельное сопротивление возрастает.

Удельную электропроводность чистого (беспримесного) полупроводника, называемая собственной удельной электропроводностью ,

, (35.5)

где , – концентрации, а и – подвижности электронов проводимости и дырок, соответственно.

В беспримесных полупроводниках уровень Фéрми лежит приблизительно посередине запрещенной зоны. Поэтому для электронов зоны проводимости, располагающихся вблизи дна зоны проводимости, показатель степени в (35.1)

С учетом того, что , вероятность заполнения электронами состояний зоны проводимости

Количество электронов, перешедших в зону проводимости, а следовательно, и количество дырок, образовавшихся в валентной зоне, будет пропорционально вероятности (35.7).

В полупроводниках, так же как и в металлах, с повышением температуры подвижности электронов и дырок возрастают, но концентрация носителей вследствие перехода все новых электронов из валентной зоны в зону проводимости растет значительно быстрее. В результате удельная электропроводность полупроводника растет:

где – основание натуральных логарифмов, – ширина запрещенной зоны, – постоянная Больцмана, – абсолютная температура, – предельное значение удельной электропроводности полупроводника при устремлении температуры в бесконечность, когда населенности валентной зоны и зоны проводимости электронами практически выравнивается. Таким образом, удельная электропроводность полупроводника с повышением температуры возрастает по экспоненциальному закону (см. рис. 35.10).

Температурная зависимость сопротивления полупроводника имеет вид:

где – предельное значение сопротивления полупроводника при устремлении температуры в бесконечность. При низких температурах удельное сопротивление полупроводника весьма велико и он практически является изолятором, а при очень высоких температурах удельное сопротивление становится почти таким же, как у металлов.

К полупроводникам принадлежат кристаллы многих элементов таблицы Менделеева (кремний Si, германий Ge, селен Se и др.), закись меди , сернистый свинец и многие другие химические элементы. Современна микроэлектроника практически полностью базируется на кремнии. Атом кремния имеет порядковый номер в периодической системе Менделеева . Поэтому заряд ядра атома кремния равняется и в состав атома входит 14 электронов. Четыре из них образуют наиболее удаленную от ядра электронную оболочку. Эти четыре электрона сравнительно слабо связаны с ядром. Они обеспечивают четыре ковалентные связи кремния в химических соединениях и поэтому называются валентными электронами . Остальные десять электронов вместе с ядром образуют остов атома, имеющий заряд . Четыре валентных электрона движутся вокруг остова и образуют облако отрицательного заряда. На рис. 35.11 показано схематическое изображение атома кремния с его четырьмя ковалентными связями.

В кристаллической решетке кремния каждый атом окружен четырьмя ближайшими соседями. Упрощенная плоская схема размещения атомов изображена на рис. 35.12. Связь двух соседних атомов осуществляется парой электронов, обеспечивающих так называемую парно-электронную, или ковалентную связь. Изображенная картина соответствует чистому кремнию при очень низкой температуре. В этом случае все валентные электроны задействованы в образовании связей между атомами и не могут принимать участие в электропроводности.

При повышении температуры кристалла тепловые колебания решетки приводят к разрыву некоторых ковалентных связей. Вследствие этого часть электронов, задействованных ранее в образовании ковалентных связей, отщепляются и становятся электронами проводимости . При наличии внешнего электрического поля они перемещаются против поля и создают электрический ток.

Уход электрона, ранее принимавшего участие в образовании ковалентной связи, приводит к появлению вакансии – “дырки ” (см. рис. 35.13). Возникновение дырок создает дополнительную возможность для перенесения заряда. Действительно, при наличии дырки валентный электрон соседнего атома под действием внешнего электрического поля может перейти на место дырки. Тогда в этом месте восстановится ковалентная связь, но зато возникнет дырка в позиции, из которой перешел валентный электрон, заполнивший вакансию. В эту новую дырку сможет перейти валентный электрон из другого соседнего атома и т. д. Вследствие этого ток будет поддерживаться не только электронами проводимости, но и валентными электронами, которые перемещаться точно так же, как и электроны проводимости, против электрического поля. Дырки же будут перемещаться в направлении электрического поля, то есть так, как двигались бы положительно заряженные частицы. Таким образом, в полупроводниках возможны два типа электропроводности: электронный , осуществляемый движением электронов проводимости, и дырочный , обусловленный движением дырок.

Наряду с переходами электронов из связанного состояния в свободное (из валентной зоны в зону проводимости) происходят и обратные переходы, когда электрон проводимости заполняет одну из вакансий и превращается в валентный электрон (возвращается из зоны проводимости в валентную зону). Этот процесс называют рекомбинацией электрона и дырки. В равновесном состоянии устанавливается такая концентрация электронов (и точно такая же концентрация дырок), при которой за единицу времени происходит одинаковое число прямых и обратных переходов.

29. Зависимость электропроводности металлов от температуры.

Неупорядоченные сплавы металлов не имеют четкого че­редования ионов различных видов, образующих сплав. Бла­годаря этому, средняя длина свободного пробега электрона очень невелика, так как он рассеивается на часто встречаю­щихся нарушениях дальнего порядка кристаллической решет­ки сплава. В этом смысле можно говорить об аналогии про­цессов рассеяния электронов в неупорядоченных сплавах и фононов в аморфных телах. На рис. 18.1, а показана зависи­мость от температуры параметров, определяющих тепло- и электропроводность металла.Теплопроводность таких материалов невелика и монотон­но растет с температурой вплоть до значений , а элек­тропроводность остается практически постоянной в широком интервале температур. Сплавы широко используются как ма­териалы с весьма малым ТКС (температурный коэффициент сопротивления). Стабильность сопротивления объясняется тем, что основным процессом рассеяния является рассеяние на дефектах, параметры которого практически не зависят от температуры.

б) Моно- и поликристаллические металлы

На рис. 18.1,6 показана температурная зависимость ос­новных параметров, определяющих тепло- и электропроводность металлов. Основные механизмы рассеяния, участвующие в формировании сопротивления переносу тепла и заряда,- это электрон-фононное рассеяние и рассеяние электронов на дефектах. Электрон-фононное рассеяние,. то есть рассеяние электронов на тепловых флюктуациях кристаллической решетки, играет решающую роль при достаточно высоких тем­пературах. Эта область значений Т соответствует области I (рис. 18.1,6). В низкотемпературной области решающую роль играет рассеяние на дефектах. Заметим, что теплопроводность металла в низкотемпературной области пропорциональна Т, а не , как в случае диэлектриков.

Электропроводность металла монотонно растет с уменьшением температуры, достигая в некоторых случаях (чистые ме­таллы, монокристаллы) огромных значений. Теплопровод­ность металла имеет максимум при и также может иметь большую величину.
30. Зависимость теплопроводности диэлектриков от температуры.

В аморфных телах длина свободного пробега фононов очень мала и имеет величину порядка 10-15 Ангстрем. Это связано с сильным рассеянием волн в решетке вещества на неоднородностях структуры самой решетки аморфного тела. Рассеяние на неоднородностях структуры оказывается преобладающим в широком интервале температур от единиц градусов Кельвина до температуры размягчения аморфного тела. При очень низких температурах в спектре тепловых ко­лебаний исчезают высокочастотные фононы; низкочастотные длинноволновые фононы не испытывают сильного рассеяния на неоднородностях, размер которых меньше длины волны, и поэтому при очень низких температурах среднее время сво­бодного пробега несколько возрастает. В соответствии с кине­тической формулой зависимость коэффициента тепло­проводности от температуры определяется в основном тем­пературным ходом теплоемкости. На рис. 17.1, а показан тем­пературный ход , С v и х для аморфных диэлектриков.

Теплопроводность диэлектрических монокристаллов не мо­жет быть рассмотрена только с позиций рассеяния фононов на дефектах кристаллической решетки. В этом случае ре­шающую роль играют процессы взаимодействия фононов между собой. Говоря о вкладе фонон-фононного взаимодейст­вия в процессах теплопереноса, нужно четко различать роль нормальных процессов (N-процессов) и процессов переброса (U-процессов).

При N-процессах фонон, возникший в результате акта взаимодействия, сохраняет квазиимпульс двух фононов, его породивших: . То же происходит и при N-процессах распада одного фонона на два. Таким образом, при N -про­цессах происходит перераспределение энергии между фононами, но сохраняется их квазиимпульс, т. е. сохраняется на­правленность движения и сохраняется общая сумма энергии, переносимой в данном направлении. Перераспределение энергии между фононами не влияет на перенос тепла, так как тепловая энергия не связана с фононами определенной частоты. Таким образом, N-процессы не создают сопротивления тепловому потоку. Они только выравнивают распределение энергии между фононами разной частоты, если такое распределение может быть нару­шено другими взаимодействиями.

Иначе обстоит дело с U-процессами, при которых в ре­зультате взаимодействия двух фононов рождается третий, на­правление распространения которого может оказаться проти­воположным направлению распространения исходных фоно­нов. Другими словами, в результате U-процессов могут воз­никать элементарные тепловые потоки, направленные в об­ратную сторону по отношению к основному потоку. В силу этого U-процессы создают тепловое сопротивление, которое при не очень низкой температуре может оказаться решающим.

При достаточно большой температуре средняя длина сво­бодного пробега фононов, определяемая U-процессами, обрат­но пропорциональна температуре, При уменьшении темпера­туры величины и растут по закону .

U-процессы возникают тогда, когда суммарный волновой вектор выходит за пределы зоны Бриллюэна.

При начинает сказываться уменьшение возбуждения высококачественных фононов, для которых Бла­годаря этому начинает резко падать число фононов, способ­ных участвовать в процессах переброса. Поэтому и начи­нают расти с уменьшением Т гораздо быстрее, чем .С уменьшением температуры средняя длина свободного про­бега растет вплоть до тех значений, при которых заметно сказывается рассеяние на дефектах или границах образца. На рис. 17.1,6 показан ход зависимостей , С v и х от темпе­ратуры. Температурную зависимость коэффициента теплопро­водности х можно разделить на три участка: I – высокотемпературная область, , решающую роль в об­разовании теплового сопротивления играют U-процессы. II- область максимума теплопроводности, эта область обычно ле­жит при Т . III - низкотемпературная область, в этой области тепловое сопротивление определяется рассеянием на дефектах, , что задается температурным ходом емкости.

Основная особенность полупроводника состоит в том, что электрическая проводимость его является примесной в области низких температур и собственной - в области высоких. Температурный ход проводимости полупроводников определяется температурной зависимостью концентрации и частично подвижности носителей. В области собственной проводимости, температурная зависимость электропроводности определяется в основном температурной зависимостью концентрации носителей заряда, которая пропорциональна , а слабой зависимостью подвижности от температуры можно пренебречь. Так как концентрация носителей в собственном полупроводнике равна , а проводимость собственного полупроводника равна , то собственную проводимость полупроводника можно представить в виде или , (25)

где – коэффициент, слабо зависящий от температуры, так как плотности состояний N C и N V в зоне проводимости и валентной зоне соответственно, а также подвижности электронов μ n и дырок μ р также слабо зависят от температуры.

Аналогично для примесной проводимости имеем:

где С 1 – некоторый коэффициент, слабо зависящий от температуры, ΔЕ пр – энергия ионизации примеси.

Удельная электропроводность полупроводника равна сумме собственной и примесной проводимости: γ = γ i + γ пр. При сравнительно низких температурах (комнатных) преобладает примесная проводимость γ ≈ γ пр, а при высоких температурах все примесные центры ионизированы (примесное истощение) и начинает преобладать собственная проводимость. Тогдаγ ≈ γ i . Иллюстрировать температурную зависимость проводимости полупроводника удобно с помощью графика, где на оси ординат отложено значение lnγ, а на оси абсцисс – 1/Т . Прологарифмировав γиз формулы (25), получим выражение:

График зависимости lnγ от 1/Т будет иметь вид ломанной линии (рис. 16). В области низких температур в полупроводнике имеет место примесная проводимость (участок 1…2), увеличение которой с ростом температуры определяется возрастанием концентрации примесных носителей заряда в результате тепловой ионизации примесей. Участок 2…3 (участок примесного насыщения) соответствует температурам, при которых все атомы примеси ионизированы, а собственная проводимость еще очень мала; в результате уменьшении подвижности носителей с ростом температуры из-за рассеяния на тепловых колебаниях решетки, проводимость полупроводника незначительно уменьшается. Для полупроводников с высокой концентрацией примесей, имеющих небольшие значения энергии ионизации ΔЕ пр (как, например, примеси элементов пятой и третьей групп в германии и кремнии, для которых ΔЕ пр составляет сотые доли электрон-вольта), температурная зависимость подвижности несущественна. Дальнейшее повышение температуры вызывает более резкое увеличение электропроводности, что связано с тепловой генерацией собственных электронов и дырок (участок 3…4). На графике (см. рис. 16) случай а соответствует высокой концентрации примеси в полупроводнике (германий), случай b – более низкой концентрации, а случай c соответствует полупроводнику (кремнию) с шириной запрещенной зоны большей, чем у германия. Участок 2…3 играет очень важную роль в работе полупроводниковых приборов, так как соответствует области рабочих температур. Работа многих полупроводниковых приборов нарушается при наступлении собственной электропроводности, поэтому стараются использовать широкозонные полупроводники, такие, чтобы участок 2…3 был как можно больше. В кремнии, например, участку примесного насыщения соответствует диапазон температур от 100 до 500 К.

Температурная зависимость электропроводности полупроводника используется для приближенного определения ширины запрещенной зоны полупроводника Е g и иногда для определения энергии ионизации примесей ΔЕ пр. Используя формулу (27) и взяв на участке собственной проводимости (участок 3…4) значения 1/Т 1 и 1/Т 2 и соответствующие им значения lnγ 1 и lnγ 2 , получаем систему двух уравнений

решая которую относительно Е g , получим формулу

Аналогично, взяв на участке примесной проводимости, если он ясно выражен, температуры 1/Т 3 и 1/Т 4 и соответствующие им значения lnγ 3 и lnγ 4 , получим формулу для вычисления энергии ионизации примеси.

КАЗАНСКИЙ ГОСУДАРСТВЕННЫЙ ЭНЕРГЕТИЧЕСКИЙ

УНИВЕРСИТЕТ

Кафедра физики

Реферат

Температурная зависимость проводимости полупроводника

Выполнил: Романов А.В. – группа ЗЭС-1-04___________(дата,подпись)

Проверил: ________________________________________(дата,подпись)

Домашний адрес:

г. Елабуга

ул. Окружное шоссе д. 35 кв. 69

Дата отсылки:

Казань 2006

Полупроводники - это вещества, имеющие при комнатной температуре удельную электрическую проводимость в интервале от 10 -8 до 10 6 Ом -1 м -1 , которая в сильной степени зависит от вида и количества примеси и структуры вещества, а также от внешних условий: температуры, освещения, внешних электрических и магнитных полей, облучения. Электропроводность твердых тел в современной физике объясняется на основе зонной теории. На рис. I показаны упрощенные диаграммы энергетических зон собственного, акцепторного и донорного полупроводников.

Кристаллы полупроводников неизбежно в реальных условиях обладают определенным количеством посторонней примеси, даже если требуется получить материал очень высокой степени чистоты. Примеси также специально вводятся либо во время роста кристаллов с целью получить полупроводник с заданными электрическими свойствами, либо - при изготовлении приборных структур. Такие полупроводники называются легированными или примесными. Атомы примеси, отличаясь от атомов основного кристалла валентностью, создают уровни разрешенных энергий электронов в запрещенной зоне, которые либо могут поставлять электроны в зону проводимости, либо принимать на себя электроны из валентной зоны. Эти процессы мы рассмотрим в дальнейшем. В данном разделе нас будет интересовать идеализированная модель полупроводника, в котором отсутствуют какие-либо примеси. Такие полупроводники называются собственными.

При нагревании проводимость полупроводников резко возрастает. Температурная зависимость проводимости s собственного полупроводника определяется изменением концентрации n и подвижностиэлектронов m - и дырок m + от температуры:

s = e ( n - m - + n + m +) (1)

Подвижность носителей заряда в полупроводниках зависит от температуры сравнительно слабо и с ее возрастанием уменьшается по закону m~T –3/2 . Это объясняется тем, что с повышением температуры возрастает число столкновений в единицу времени, вследствие чего уменьшается скорость направленного движения носителей заряда в поле единичной напряженности.

Рассмотрим донорный полупроводник. Вследствие малой концентрации электронов проводимости полупроводники подчиняются классической статистике Максвелла-Больцмана. Поэтому в области низких температур для концентрации электронов в зоне проводимости с одним видом примеси имеем:

n = A T 3/2 e - D W / kT , (2)

где А - коэффициент, не зависящий от Т; DW - энергия активации примеси, то есть энергетический интервал между донорным уровнем и нижним краем зоны проводимости (рис. Iв)К - постоянная Больцмана.

Рассмотрим упрощенную зонную модель собственного полупроводника, изображенную на рис. 1. Этой моделью мы в основном будем пользоваться в дальнейшем. В данной модели энергия электронов положительная и отсчитывается вверх по оси ординат. Энергия дырок отрицательная и отсчитывается вниз. Под осью абцисс подразумеваются пространственные координаты, а также по этой оси, в зависимости от условий задачи, могут откладываться температура, концентрация примеси, указываться направление электрического поля. Валентная зона и зона проводимости ограничены прямыми, обозначающими: E v - потолок валентной зоны; E c - дно зоны проводимости. Выбор начала отсчета энергии электрона произволен, как правило, она отсчитывается от потолка валентной зоны. Ширина запрещенной зоны определяется как разность E g = E c - E v .

Рассмотрим теперь в чем состоит физическая причина резкого отличия в температурной зависимости проводимости полупроводников и металлов.

Рис. 1. Простая зонная модель собственного полупроводника: E v - потолок валентной зоны; E c - дно зоны проводимости.

E g = E c - E v - ширина запрещенной зоны. G - генерация электронно-дырочной пары, R - рекомбинация электронно-дырочной пары.

Волнистыми стрелками показаны процессы поглощения и испускания фотона при световой генерации и излучательной рекомбинации соответственно.

При температуре Т > 0 средняя энергия фонона равна (k - постоянная Больцмана), например, при комнатной температуре Т = 300 К она равна 0,039 эВ. Однако в силу распределения Максвелла - Больцмана существует конечная вероятность того, что фонон имеет энергию Eg, которая может значительно превышать среднюю, и эта вероятность пропорциональна. Электроны постоянно обмениваются энергией с фононами в процессе столкновений. Естественно, в стационарных условиях электронная подсистема кристалла в целом находится в тепловом равновесии с колебаниями решетки, однако отдельные электроны могут иметь энергию много больше средней. Тепловым возбуждением электрона называется акт передачи энергии от фонона электрону такой, что происходит разрыв ковалентной связи.

Если электрон получит от фонона энергию больше или равную Eg он может "заброситься" из валентной зоны в зону проводимости, где он становится свободным и может участвовать в переносе заряда при приложении внешнего электрического поля. Одновременно с переходом электрона в зону проводимости в валентной зоне образуется ІсвободнаяІ дырка, которая также участвует в электропроводности. Таким образом, в собственных полупроводниках свободные электроны и дырки рождаются парами, этот процесс называется генерацией электронно-дырочных пар (рис. 1). Наряду с этим происходит обратный процесс - взаимная аннигиляция электронов и дырок, когда электрон возвращается в валентную зону. Этот процесс называется рекомбинацией электронно-дырочных пар. Число генерированных (рекомбинированных) пар носителей заряда в единице объема в единицу времени называется темпом генерации-G (рекомбинации - R). В стационарных условиях темпы тепловой генерации и рекомбинации равны, то есть G = R (1)

Заметим, что генерация электронно-дырочных пар может происходить и при облучении полупроводника светом частотой v, такой, что энергия фотона удовлетворяет условию

При световой генерации электрон поглощает фотон (рис. 1). При обратном процессе рекомбинации высвободившаяся энергия, равная Eg, может либо передаваться от электрона обратно решетке (фонону), либо уноситься фотоном. Могут также одновременно рождаться фононы и фотоны, но тогда, в силу закона сохранения, их парциальные энергии меньше Eg. Если энергия уносится фотоном, то этот процесс называется излучательной рекомбинацией. Световая генерация и излучательная рекомбинация лежат в основе работы целого класса оптоэлектронных полупроводниковых приборов - источников и приемников излучения, которые мы в данном курсе не имеем возможности рассматривать.

Очевидно, что при тепловой генерации более вероятны переходы электронов с одного из верхних уровней валентной зоны, если они заняты электронами, на один из нижних уровней зоны проводимости, - если они свободны, поскольку для таких переходов требуется меньшая энергия. Отсюда следует, что темп генерации G пропорционален: числу возможных занятых состояний электронов N v вблизи потолка валентной зоны; числу незанятых уровней N c вблизи дна зоны проводимости (физический смысл N v и N c будет рассмотрен в дальнейшем) и вероятности электрону иметь энергию E g:

где, a - коэффициент пропорциональности, зависящий от частоты столкновений фононов и электронов. С другой стороны, темп рекомбинации R пропорционален вероятности "встречи" носителей, т.е. произведению концентраций электронов n и дырок р (g - коэффициент пропорциональности):

так как для собственного полупроводника n = p. В стационарном случае имеет место равенство (2), тогда

Проводимость кристалла согласно (6) пропорциональна концентрации электронов и подвижности. Как видно из выражения (7) концентрация n в собственном полупроводнике экспоненциально растет с увеличением температуры, в то же время температурная зависимость подвижности в проводимости играет менее заметную роль. Таким образом, проводимость собственного полупроводника в первом приближении растет с температурой по такому же закону, что и концентрация электронов и дырок (пока не станет заметным рассеяние носителей заряда на тепловых колебаниях решетки). Поэтому можно записать:

(8)

Итак, с феноменологической точки зрения полупроводники отличаются от металлов тем, что в полупроводниках с повышением температуры проводимость очень быстро растет. Физическая причина этого заключается в увеличении темпа тепловой генерации электронно-дырочных пар с ростом температуры. Если прологарифмировать выражение (8), то оно примет вид

Следовательно, если на графике по оси ординат откладывать lns , а по оси абцисс - обратную температуру, то получим прямую с наклоном E g /2k , как показано на рис. 2. Таким образом, зная наклон этой прямой можно определить важнейшую характеристику полупроводника - ширину запрещенной зоны. Определяемую таким образом величину Eg называют термической шириной запрещенной зоны, поскольку ее еще определяют и из оптических измерений по спектрам поглощения излучения и вычисляют Eg, на основании выражения (9).

Как отмечалось во Введении, с ростом температуры в полупроводнике будет появляться все больше свободных носителей электрического заряда – электронов в зоне проводимости и дырок в валентной зоне. Если внешнее электрическое поле отсутствует, то движение этих заряженных частиц носит хаотический характер и ток через любое сечение образца равен нулю. Среднюю скорость частиц – т.н. «тепловую скорость» можно рассчитать по той же формуле, что и среднюю тепловую скорость молекул идеального газа

где k - постоянная Больцмана; m -эффективная масса электронов или дырок.

При приложении внешнего электрического поля в полупроводнике появится направленная, «дрейфовая» компонента скорости – по полю у дырок, против поля – у электронов, т.е. через образец потечет электрический ток. Плотность тока j будет складываться из плотностей «электронного» j n и «дырочного» j p токов:

где n, p - концентрации свободных электронов и дырок; υ n , υ p – дрейфовые скорости носителей заряда.

Здесь следует заметить, что хотя заряды у электрона и дырки – противоположные по знаку, но и векторы дрейфовых скоростей направлены в противоположные стороны, т. е. суммарный ток фактически является суммой модулей электронного и дырочного токов.

Очевидно, что скорости υ n и υ p будут сами зависеть от внешнего электрического поля (в простейшем случае – линейно). Введем коэффициенты пропорциональности μ n и μ p , называемые «подвижностями» носителей заряда

и перепишем формулу 2 в виде:

j = en n E + ep p E = n E + p E = E. (4)

Здесь - электропроводность полупроводника, а n и p - ее электронная и дырочная составляющие, соответственно.

Как видно из (4) электропроводность полупроводника определяется концентрациями свободных носителей заряда в нем и их подвижностями. Это будет справедливым и для электропроводности металлов. Но в металлах концентрация электронов очень велика
и не зависит от температуры образца.Подвижность электронов в металлах убывает с температурой вследствие увеличения числа столкновений электронов с тепловыми колебаниями кристаллической решетки, что и приводит к уменьшению электропроводности металлов с ростом температуры. В полупроводниках же основной вклад в температурную зависимость электропроводности вносит зависимость от температуры концентрации носителей заряда.

Рассмотрим процесс теплового возбуждения (генерации ) электронов из валентной зоны полупроводника в зону проводимости. Хотя средняя энергия тепловых колебаний атомов кристалла
составляет, например, при комнатной температуре всего 0,04 эВ, что намного меньше ширины запрещенной зоны большинства полупроводников, среди атомов кристалла будут и такие, энергия колебаний которых соизмерима сε g . При передаче энергии от этих атомов электронам, последние переходят в зону проводимости. Количество электронов в интервале энергий от ε до ε +d ε зоны проводимости можно записать как:

где
- плотность энергетических уровней (6);

- вероятность заселения уровня с энергией ε электроном (функция распределения Ферми ). (7)

В формуле (7) символом F обозначен т.н. уровень Ферми. В металлах уровень Ферми – последний занятый электронами уровень при абсолютном нуле температуры (см. Введение). Действительно, f (ε ) = 1 при ε < F и f (ε ) = 0 при ε > F (рис.1).

Рис.1. Распределение Ферми-Дирака; ступенчатое при температуре абсолютного нуля и «размытое» при конечных температурах.

В полупроводниках, как мы увидим в дальнейшем, уровень Ферми обычно находится в запрещенной зоне, т.е. на нем не может находиться электрон. Однако и в полупроводниках при Т = 0 все состояния, лежащие ниже уровня Ферми, заполнены, а состояния выше уровня Ферми – пусты. При конечной температуре вероятность заселения электронами уровней с энергией ε > F уже не равна нулю. Но концентрация электронов в зоне проводимости полупроводника все же намного меньше числа свободных энергетических состояний в зоне, т.е.
. Тогда в знаменателе (7) можно пренебречь единицей и записать функцию распределения в «классическом» приближении:

. (8)

Концентрацию электронов в зоне проводимости можно получить, проинтегрировав (5) по зоне проводимости от ее дна - Е 1 до вершины - Е 2 :

В интеграле (9) за нуль отсчета энергий принято дно зоны проводимости, а верхний предел заменен на
из-за быстрого убывания экспоненциального множителя с ростом энергии.

После вычисления интеграла получим:

. (10)

Вычисления концентрации дырок в валентной зоне дают:

. (11)

Для полупроводника, в составе которого отсутствуют примеси, т.н. собственного полупроводника, концентрация электронов в зоне проводимости должна быть равна концентрации дырок в валентной зоне (условие электронейтральности ). (Отметим, что таких полупроводников в природе не существует, но при определенных температурах и определенных концентрациях примесей можно пренебречь влиянием последних на свойства полупроводника). Тогда, приравнивая (10) и (11), получаем для уровня Ферми в собственном полупроводнике:

. (12)

Т.е. при абсолютном нуле температур уровень Ферми в собственном полупроводнике расположен точно посередине запрещенной зоны, и проходит вблизи середины запрещенной зоны при не очень высоких температурах, несколько смещаясь обычно в сторону зоны проводимости (эффективная масса дырок, как правило, больше эффективной массы электронов (см.Введение). Теперь, подставляя (12) в (10), для концентрации электронов получим:

. (13)

Аналогичное соотношение получится и для концентрации дырок:

. (14)

Формулы (13) и (14) с достаточной точностью позволяют рассчитать концентрации носителей заряда в собственном полупроводнике. Значения концентрации, вычисленные по этим соотношениям, называются собственными концентрациями. Например, для германия Ge, кремния Si и арсенида галлия GaAs при Т=300 К они составляют соответственно. Практически же, для изготовления полупроводниковых приборов, применяются полупроводники со значительно более высокими концентрациями носителей заряда (
). Бóльшая, по сравнению с собственной, концентрация носителей обусловлена введением в полупроводникэлектроактивных примесей (существуют еще т.н. амфотерные примеси, введение которых в полупроводник не изменяет концентрацию носителей в нем). Примесные атомы в зависимости от валентности и ионного (ковалентного) радиуса могут по-разному входить в кристаллическую решетку полупроводника. Одни из них могут замещать атом основного вещества в узле решетки – примеси замещения. Другие располагаются преимущественно в междоузлиях решетки – примеси внедрения. Различно и их влияние на свойства полупроводника.

Допустим, что в кристалле из четырехвалентных атомов кремния часть атомов Si замещена атомами пятивалентного элемента, например, атомами фосфора Р. Четыре валентных электрона атома фосфора образуют ковалентную связь с ближайшими атомами кремния. Пятый валентный электрон атома фосфора будет связан с ионным остовом кулоновским взаимодействием. В целом эта пара из иона фосфора с зарядом +е и связанного с ним кулоновским взаимодействием электрона будет напоминать атом водорода, вследствие чего такие примеси называются еще и водородоподобными примесями. Кулоновское взаимодействие в кристалле будет значительно ослаблено из-за электрической поляризации окружающих примесный ион соседних атомов. Энергию ионизации такого примесного центра можно оценить по формуле:

, (15)

где - первый потенциал ионизации для атома водорода – 13,5 эВ;

χ – диэлектрическая проницаемость кристалла (χ =12 для кремния).

Подставив в (15) эти значения и значение эффективной массы электронов в кремнии - m n = 0,26 m 0 , получим для энергии ионизации атома фосфора в кристаллической решетке кремния ε I = 0,024 эВ, что существенно меньше ширины запрещенной зоны и даже меньше средней тепловой энергии атомов при комнатной температуре. Это означает, во-первых, что примесные атомы гораздо легче ионизировать, чем атомы основного вещества и, во-вторых, - при комнатной температуре эти примесные атомы будут все ионизированы. Появление в зоне проводимости полупроводника электронов, перешедших туда с примесных уровней, не связано с образованием дырки в валентной зоне. Поэтому концентрация основных носителей тока – электронов в данном образце может на несколько порядков превышать концентрацию неосновных носителей – дырок. Такие полупроводники называются электронными или полупроводниками n-типа, а примеси, сообщающие полупроводнику электронную проводимость, называются донорами . Если в кристалл кремния ввести примесь атомов трехвалентного элемента, например, - бора В, то одна из ковалентных связей примесного атома с соседними атомами кремния остается незавершенной. Захват на эту связь электрона с одного из соседних атомов кремния приведет в появлению дырки в валентной зоне, т.е. в кристалле будет наблюдаться дырочная проводимость (полупроводник р-типа ). Примеси, захватывающие электрон, называются акцепторами. На энергетической диаграмме полупроводника (рис.2) донорный уровень размещается ниже дна зоны проводимости на величину энергии ионизации донора, а акцепторный – выше потолка валентной зоны на энергию ионизации акцептора. Для водородоподобных доноров и акцепторов, какими являются в кремнии элементы V и III групп Периодической системы Менделеева, энергии ионизации примерно равны.

Рис.2. Энергетические диаграммы электронного(слева) и дырочного (справа) полупроводников. Показано положение уровней Ферми при температурах, близких к абсолютному нулю.

Вычисление концентрации носителей заряда в полупроводнике с учетом примесных электронных состояний – задача достаточно непростая и аналитическое решение ее можно получить только в некоторых частных случаях.

Рассмотрим полупроводник n-типа при температуре, достаточно низкой. В этом случае можно пренебречь собственной проводимостью. Все электроны в зоне проводимости такого полупроводника – это электроны, перешедшие туда с донорных уровней:

. (16)

Здесь
- концентрация донорных атомов;

- число электронов, оставшихся еще на донорных уровнях :

. (17)

С учетом (10) и (17) уравнение 16 запишем в виде:

. (18)

Решая это квадратное уравнение относительно
, получим

Рассмотрим решение уравнения при очень низких температурах (на практике – это обычно температуры порядка десятков градусов Кельвина), когда второе слагаемое под знаком квадратного корня много больше единицы. Пренебрегая единицами, получим:

, (20)

т.е. при низких температурах уровень Ферми расположен примерно посередине между донорным уровнем и дном зоны проводимости (при Т = 0К – точно посередине). Если подставить (20) в формулу для концентрации электронов (10), то можно видеть, что концентрация электронов растет с температурой по экспоненциальному закону

. (21)

Показатель экспоненты
указывает на то, что в данном диапазоне температур концентрация электронов растет за счетионизации донорных примесей.

При более высоких температурах, - при таких, когда собственная проводимость еще незначительна, но выполняется условие
, второе слагаемое под корнем будет меньше единицы и используя соотношение

+…., (22)

получим для положения уровня Ферми

, (23)

а для концентрации электронов

. (24)

Все доноры уже ионизированы, концентрация носителей в зоне проводимости равна концентрации донорных атомов – это т.н. область истощения примесей. При еще более высоких температурах происходит интенсивный заброс в зону проводимости электронов из валентной зоны (ионизация атомов основного вещества) и концентрация носителей заряда снова начинает расти по экспоненциальному закону (13), характерному для области с собственной проводимостью. Если представить зависимость концентрации электронов от температуры в координатах
, то она будет выглядеть в виде ломаной линии, состоящей из трех отрезков, соответствующих рассмотренным выше температурным диапазонам (рис.3).

Рис.3. Температурная зависимость концентрации электронов в полупроводникеn-типа.

Аналогичные соотношения, с точностью до множителя, получаются при вычислении концентрации дырок в полупроводнике р-типа.

При очень высоких концентрациях примесей (~10 18 -10 20 см -3) полупроводник переходит в т.н. вырожденное состояние. Примесные уровни расщепляются в примесную зону, которая может частично перекрыться с зоной проводимости (в электронных полупроводниках) или с валентной зоной (в дырочных). При этом концентрация носителей заряда практически перестает зависеть от температуры вплоть до очень высоких температур, т.е. полупроводник ведет себя как металл (квазиметаллическая проводимость ). Уровень Ферми в вырожденных полупроводниках будет располагаться или очень близко от края соответствующей зоны, или даже заходить внутрь разрешенной энергетической зоны, так, что и зонная диаграмма такого полупроводника будет похожа на зонную диаграмму металла (см. рис. 2а Введения). Для расчета концентрации носителей заряда в таких полупроводниках функцию распределения следует брать не в виде (8), как это делалось выше, а в виде квантовой функции (7). Интеграл (9) в этом случае вычисляется численными методами и носит название интеграла Ферми-Дирака. Таблицы интегралов Ферми-Дирака для значений приведены, например, в монографии Л.С.Стильбанса.

При
степень вырождения электронного (дырочного) газа настолько высока, что концентрация носителей не зависит от температуры вплоть до температуры плавления полупроводника. Такие «вырожденные» полупроводники используются в технике для изготовления ряда электронных приборов, среди которых важнейшими являютсяинжекционные лазеры и туннельные диоды.

Определенный, хотя и менее существенный вклад, в температурную зависимость электропроводности будет вносить температурная зависимость подвижности носителей заряда. Подвижность, «макроскопическое» определение которой дано нами в (3), может быть выражена через «микроскопические» параметры – эффективную массу и время релаксации импульса – среднее время свободного пробега электрона (дырки) между двумя последовательными столкновениями с дефектами кристаллической решетки:

, (25)

а электропроводность, с учетом соотношений (4) и (25) запишется, как:

. (26)

В качестве дефектов – центров рассеяния могут выступать тепловые колебания кристаллической решетки – акустические и оптические фононы (см. методич. пособие «Структура и динамика…»), примесные атомы – ионизированные и нейтральные, лишние атомные плоскости в кристалле – дислокации, поверхность кристалла и границы зерен в поликристаллах и т.д. Сам процесс рассеяния носителей заряда на дефектах может быть упругим и неупругим – в первом случае происходит только изменение квазиимпульса электрона (дырки); во-втором – изменение и квазиимпульса и энергии частицы. Если процесс рассеяния носителя заряда на дефектах решетки –упругий , то время релаксации импульса можно представить в виде степенной зависимости от энергии частицы:
. Так, для наиболее важных случаев упругого рассеяния электронов на акустических фононах и ионах примеси

(27)

и
. (28)

Здесь
- величины, не зависящие от энергии;
- концентрацияионизированных примесей любого типа.

Усреднение времени релаксации осуществляется по формуле:

;
. (29)

С учетом (25)-(29) получим:


. (30)

Если в каком-либо диапазоне температур вклады в подвижность носителей, соответствующие разным механизмам рассеяния, сопоставимы по величине, то подвижность будет рассчитываться по формуле:

, (31)

где индекс i соответствует определенному механизму рассеяния: на примесных центрах, на акустических фононах, оптических фононах и т.д.

Типичная зависимость подвижности электронов (дырок) в полупроводнике от температуры показана на рис.4.

Рис.4. Типичная зависимость от температуры подвижности носителей заряда в полупроводнике.

При очень низких температурах (в районе абсолютного нуля) примеси еще не ионизированы, рассеяние происходит на нейтральных примесных центрах и подвижность практически не зависит от температуры (рис.4, участок а-б). С повышением температуры концентрация ионизированных примесей растет по экспоненциальному закону, а подвижность падает согласно (30) – участок б-в. В области истощения примесей концентрация ионизированных примесных центров уже не изменяется, и подвижность растет, как
(рис.4, в-г). При дальнейшем повышении температуры начинает преобладать рассеяние на акустических и оптических фононах и подвижность снова падает (г-д).

Поскольку температурная зависимость подвижности в основном – степенная функция температуры, а температурная зависимость концентрации – в основном экспоненциальная, то и температурный ход электропроводности будет в основных чертах повторять температурную зависимость концентрации носителей заряда. Это дает возможность достаточно точно определять по температурной зависимости электропроводности важнейший параметр полупроводника – ширину его запрещенной зоны, что и предлагается проделать в данной работе.

Лучшие статьи по теме