Медицинский сайт
  • Главная
  • Дерматология
  • Условия существования свободных колебаний. Условия возникновения свободных колебаний — Гипермаркет знаний При каких условиях возникает колебание

Условия существования свободных колебаний. Условия возникновения свободных колебаний — Гипермаркет знаний При каких условиях возникает колебание

Рассмотрим колебания тяжелая на нитке или тяжелая на пружине. В приведенных примерах система осуществляла колебания около положения устойчивого равновесия. Почему же колебания возникают именно вблизи этого положения системы? Дело в том, что во время отклонения системы от положения устойчивого равновесия,

равнодействующая всех сил, приложенных к телу, стремится вернуть систему в положение равновесия. Эту равнодействующую так и называют - возвратно силой. Однако, вернувшись в состояние равновесия, система вследствие инерции «проскакивает» его. После этого снова возникает возвратно сила, направленная теперь в противоположную сторону. Так и возникают колебания. Чтобы колебания продолжались долгое время, необходимо, чтобы силы трения или силы сопротивления были очень маленькими.

Итак, для того, чтобы в системе происходили свободные колебания, необходимо выполнение двух условий:

Система должна находиться вблизи положения устойчивого равновесия;

Силы трения или силы сопротивления должны быть достаточно малыми

Амплитуда колебаний

Во время колебаний смещение тела от положения равновесия периодически меняется.

Амплитуда колебаний - это физическая величина, характеризующая колебательное движение и равна максимальной расстояния, на которое отклоняется колеблющихся тело от своего положения равновесия.

Амплитуду колебаний обозначают символом А. Единица амплитуды колебаний в СИ - метр (м).

Амплитуда свободных колебаний определяется начальными условиями, т.е. тем начальным отклонением или толчком, которым грузы на нити или на пружине были приведены в движение.

Если груз на нити (или на пружине) оставить в покое, то через некоторое время амплитуда колебаний заметно уменьшится. Колебания, амплитуда которых с течением времени уменьшается, называются затухающими. Колебания, амплитуда которых со временем не меняется, называются незатухающими.

Вопрос к ученикам во время изложения нового материала

1. Какие тела образуют систему во время колебаний груза, висящего на нитке? Какова природа сил в случае взаимодействия этих тел?

2. Какие тела образуют систему во время колебаний груза, который находится на пружине? Какова природа сил в случае взаимодействия этих тел?

3. Равнодействующая которых сил играет роль возвратно силы во время колебаний груза, висящего:

а) на нитке?

б) на пружине?

4. Можно принимать за амплитуду размах колебаний?

Закрепление изученного материала

1. Тренируемся решать задачи

1. Можно назвать свободными колебания:

а) поплавка на волнах?

б) струны скрипки?

в) грузовика едет по ухабам?

г) иглы швейной машины?

д) отделов камертона?

2. Какие из перечисленных колебаний являются свободными:

а) колебания подвешенного на пружине тяжелая после случайного толчка;

б) колебания поверхности включенного динамика;

в) колебания подвешенного на нитке тяжелая (нить вывели из положения равновесия и отпустили)?

3. Тело за 10 с осуществило 50 колебаний. Чему равна период колебаний?

4. Во время колебаний грузик, подвешенный на нити, проходит через положение равновесия с интервалом 0,5 с. Чему равна период колебаний?

5. Поплавок колеблется на поверхности воды, за 3 с всплывает и ныряет в воду шесть раз. Вычислите период и частоту колебаний.

2. Контрольные вопросы

1. Приведите примеры свободных и вынужденных колебаний.

2. В каких случаях колебания невозможны?

3. Назовите свойства колебательной системы.

4. В чем принципиальное отличие колебательного движения от движения по кругу?

5. Какие величины, характеризующие колебательное движение, изменяются периодически?

6. В каких единицах измеряются период, частота и циклическая частота колебаний?

Что мы узнали на уроке

Колебаниями называются физические процессы, точно или приблизительно повторяются через одинаковые интервалы времени.

Механические колебания называются такие движения тел, во время которых через равные интервалы времени координаты тела в движении - скорость и ускорение - приобретают исходных значений.
Свободные колебания - это колебания, происходящие в механической системе под действием внутренних сил системы после кратковременного воздействия какой-то внешней силы.

Колебания, возникающие под действием внешних сил и изменяются с течением времени по величине и направлению, называются вынужденными.

Условия существования свободных колебаний:

Система должна находиться вблизи положения устойчивого равновесия;

Силы трения или силы сопротивления должны быть достаточно малыми;

Амплитуда колебаний - это физическая величина, характеризующая колебательное движение и равна максимальной расстояния, на которое отклоняется колеблющихся тело от своего положения равновесия.

>> Условия возникновения свободных колебаний

§ 19 УСЛОВИЯ ВОЗНИКНОВЕНИЯ СВОБОДНЫХ КОЛЕБАНИЙ

Выясним, какими свойствами должна обладать система для того, чтобы в ней могли возникнуть свободные колебания . Удобнее всего рассмотреть вначале колебания шарика, нанизанного на гладкий горизонтальный стержень под действием силы упругости пружины 1 .

Если немного сместить шарик из положения равновесия (рис. 3.3, а) вправо, то длина пружины увеличится на (рис. 3.3, б), и на шарик начнет действовать сила упругости со стороны пружины. Эта сила согласно закону Гука пропорциональна деформации пружины и направ.пена влево. Если отпустить шарик, то под действием силы упругости он начнет двигаться с ускорением влево, увеличивая свою скорость. Сила упругости при этом будет убывать, так как деформация пружины уменьшается. В момент, когда шарик достигнет положения равновесия, сила упругости пружины станет равной нулю. Следовательно, согласно второму закону Ньютона станет равным нулю и ускорение шарика.

К этому моменту скорость шарика достигнет максимального значения. Не останавливаясь в положении равновесия, он будет по инерции продолжать двигаться влево. Пружина при этом сжимается. В результате появляется сила упругости, направленная уже вправо и тормозящая движение шарика (рис. 3.3, в). Эта сила, а значит, и направленное вправо ускорение увеличиваются по модулю прямо пропорционально модулю смещения х шарика относительно положения равновесия .

1 Анализ колебаний шарика, подвешенного на вертикальной пружине, несколько сложнее. В этом случае действуют одновременно переменная сила упругости пружины и постоянная сила тяжести. Но характер колебаний в том и другом случаях совершенно одинаков.

Скорость же будет уменьшаться до тех пор, пока в крайнем левом положении шарика не обратится в ноль. После этого шарик начнет ускоренно двигаться вправо. С уменьшением модуля смещения х сила F упр убывает по модулю и в положении равновесия опять обращается в ноль. Но шарик уже успевает к этому моменту приобрести скорость и, следовательно, по инерции продолжает двигаться вправо. Это движение приводит к растяжению пружины и появлению силы, направленной влево. Движение шарика тормозится до полной остановки в крайнем правом положении, после чего весь процесс повторяется сначала.

Если бы не существовало трения, то движение шарика не прикратилось бы никогда. Однако трение и сопротивление воздуха припятствуют движению шарика. Направление силы сопротивления как при движении шарикавправо, так и при его движении влево все время противоположно направлению скорости. Размах его колебаний постепенно будет уменьшаться до тех пор, пока движение не прекратится. При малом трении затухание становится заметным лишь после того, как шарик совершит много колебаний. Если наблюдать движение шарика на протяжении не очень большого интервала времени, то затуханием колебаний можно пренибречь. В этом случае влияние силы сопротивления на напряжение можно не учитывать.

Если сила сопротивления велика, то пренибречь ее действием даже в течении малых интервалов времени нельзя.

Опустите шарик на пружине в стакан с вязкой жидкостью, например с глицерином (рис. 3.4). Если жесткость пружины мала, то выведенный из положения равновесия шарик совсем не будет колебаться. Под действием силы упругости он просто вернется в положение равновесия (штриховая линия на рисунке 3.4). За счет действия силы сопротивления скорость его в положении равновесия будет практичеки равна нулю.

Для того, чтобы в системе могли возникнуть свободные колебания, должны выполняться два условия. Во-первых, при им ведении тела из положения равновесия в системе должна возникать сила, направленная к положению равновесия и, следовательно, стремящаяся возвратить тело в положение равновесия. Именно так действует в рассмотренной нами системе (см. рис. 3.3) пружина: при перемещении шарика и влево, и вправо сила упругости направлена к положению равновесия. Во-вторых, трение в системе должно быть достаточно мало. Иначе колебания быстро затухнут. Незатухающие колебания возможны лишь при отсутствии трения.


1. Какие колебания называют свободными!
2. При каких условиях в системе возникают свободные колебания!
3. Какие колебания называют вынужденными! Приведите примеры вынужденных колебаний.

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Выясним, при соблюдении каких условий возникает и поддерживается в течение некоторого времени колебательное движение.

Первым условием , необходимым для возникновения колебаний, является наличие у материальной точки избыточной энергии (кинетической или потенциальной) по сравнению с ее энергией в положении устойчивого равновесия.

Второе условие можно установить, проследив за движением груза 3 на рис. 24.1. В положении б на груз 3 действует сила упругости F 1 , направленная к положению равновесия груза. Под действием этой силы груз смещается к положению равновесия с постепенно возрастающей скоростью движения υ, а сила F 1 уменьшается и исчезает, когда груз попадает в это положение (рис. 24.1, в). Скорость груза в этот момент максимальна по величине, и груз, проскакивая через положение равновесия, продолжает двигаться вправо. При этом возникает сила упругости F 2 , которая тормозит движение груза 3 и останавливает его (рис. 24.1, г). Сила F 2 в этом положении имеет максимальную величину; под действием этой силы груз 3 начинает двигаться влево. В положении равновесия (рис. 24.1, д) сила F 2 исчезает, а скорость груза достигает наибольшего значения, поэтому груз продолжает двигаться влево, пока не займет положение б на рис. 24.1. Далее весь описанный процесс повторяется снова в том же порядке.

Таким образом, колебания груза 3 происходят вследствие действия силы F и наличия у груза инерции. Силу, приложенную к материальной точке, всегда направленную к положению устойчивого равновесия точки, называют возвращающей силой . В положении устойчивого равновесия возвращающая сила равна нулю и возрастает по мере удаления точки от этого положения.

Итак, вторым условием , необходимым для возникновения и продолжения колебаний материальной точки, является действие на материальную точку возвращающей силы. Напомним, что эта сила всегда возникает, когда какое-либо тело выводится из положения устойчивого равновесия.

В идеальном случае, при отсутствии трения и сопротивления среды, полная механическая энергия колеблющейся точки остается постоянной, так как в процессе таких колебаний происходит лишь переход кинетической энергии в потенциальную и обратно. Такое колебание должно продолжаться неопределенно долгое время. Если колебания материальной точки происходят при наличии трения и сопротивления среды, то полная механическая энергия материальной точки постепенно убывает, размах колебаний уменьшается и через некоторое время точка останавливается в положении устойчивого равновесия.

Бывают случаи, когда потери энергии материальной точкой настолько велики, что если внешняя сила отклоняет эту точку из положения равновесия, то она теряет всю свою избыточную энергию при возвращении в положение равновесия. В этом случае колебаний не получится. Итак, третье условие , необходимое для возникновения и продолжения колебаний, следующее: избыточная энергия, полученная материальной точкой при смещении из положения устойчивого равновесия, не должна полностью расходоваться на преодоление сопротивления при возвращении в это положение.

Выясним, при соблюдении каких условий возникает и поддерживается в течение некоторого времени колебательное движение.

Первым условием, необходимым для возникновения колебаний, является наличие у материальной точки избыточной энергии (кинетической или потенциальной) по сравнению с ее энергией в положении устойчивого равновесия (§ 24.1).

Второе условие можно установить, проследив за движением груза 3 на рис. 24.1. В положении б на груз 3 действует сила упругости направленная к положению равновесия груза (см. рис. 24.1, б). действием этой силы груз смещается к положению равновесия с постепенно возрастающей скоростью движения V, а сила уменьшается и исчезает, когда груз попадает в это положение (рис. 24.1, в). Скорость груза в этот момент максимальна по величине, и груз, проскакивая через положение равновесия, продолжает двигаться вправо. При этом возникает сила упругости которая тормозит движение груза 3 и останавливает его (рис. 24.1, г). Сила в этом положении имеет максимальную величину; под действием этой силы груз 3 начинает двигаться влево. В положении равновесия (рис. 24.1, 5) сила исчезает, а скорость груза достигает, наибольшего значения, поэтому груз продолжает двигаться влево, пока не займет положение на рис. 24.1. Далее весь описанный процесс повторяется снова в том же порядке.

Таким образом, колебания груза 3 происходят вследствие действия силы и наличия у груза инерции. Силу, приложенную к

матермальной точке, всегда направленную к положению устойчивого равновесия точки, называют возвращающей силой. В положении устойчивого равновесия возвращающая сила равна нулю и возрастает по мере удаления точки от этого положения.

Итак, вторым условием, необходимым для возникновения и продолжения колебаний материальной точки, является действие на материальную точку возвращающей силы. Напомним, что. эта сила всегда возникает, когда какое-либо тело выводится из положения устойчивого равновесия.

В идеальном случае, при отсутствии трения и сопротивления среды, полная механическая энергия колеблющейся точки остается постоянной, так как в процессе таких колебаний происходит лишь переход кинетической энергии в потенциальную и обратно. Такое колебание должно продолжаться неопределенно долгое время.

Если колебания материальной точки происходят при наличии трения и сопротивления среды, то полная механическая энергия материальной точки постепенно убывает, размах колебаний уменьшается и через некоторое время точка останавливается в положении устойчивого равновесия.

Бывают случаи, когда потери энергии материальной точкой настолько велики, что если внешняя сила отклоняет эту точку из положения равновесия, то она теряет всю свою избыточную энергию при возвращении в положение равновесия. В этом случае колебаний не получится. Итак, третье условие, необходимое для возникновения и продолжения колебаний, следующее: избыточная энергия, полученная материальной точкой при смещении из положения устойчивого равновесия, не должна полностью расходоваться на преодоление сопротивления при возвращении в это положение.

2. Момент инерции и его вычисление

Согласно определению, момент инерции тела относительно оси равен сумме произведений масс частиц на квадраты их расстояний до оси вращения или

Однако, эта формула непригодна для вычисления момента инерции; так как масса твердого тела распределена непрерывно, то сумму следует заменить на интеграл. Поэтому для вычисления момента инерции тело разбивают на бесконечно малые объемы dV с массой dm=dV. Тогда

где R - расстояние элемента dV от оси вращения.

Если момент инерции I C относительно оси, проходящей через центр масс, известен, то можно легко вычислить момент инерции относительно любой параллельной оси О, проходящей на расстоянии d от центра масс или

I O =I C +md 2 ,

Это соотношение называется теоремой Штейнера : момент инерции тела относительно произвольной оси равен сумме момента инерции относительно оси параллельной ей и проходящей через центр масс и произведения массы тела на квадрат расстояния между осями.

3. Кинетическая энергия вращения

Кинетическая энергия вращающегося вокруг закрепленной оси твердого тела

Дифференцируя формулу по времени, получим закон изменения кинетической энергии вращающегося вокруг закрепленной оси твердого тела:

скорость изменения кинетической энергии вращательного движения равна мощности момента силы.

dK вращ =M Z  Z dt=M Z d  K  K 2 -K 1 =

т.е. изменение кинетической энергии вращения равно работе момента сил .

4. Плоское движение

Движение твердого тела, при котором центр масс перемещается в фиксированной плоскости, а ось его вращения, проходящая через центр масс, остается перпендикулярной к этой плоскости, называется плоским движением . Это движение можно свести к совокупности поступательного движения и вращения вокруг неподвижной (закрепленной) оси , так как в Ц-системе ось вращения, действительно, остается неподвижной. Поэтому плоское движение описывается упрощенной системой двух уравнений движения:

Кинетическая энергия тела, совершающего плоское движение, будет:

и окончательно

,

так как в данном случае  i " - скорость вращения i-ой точки вокруг неподвижной оси.

Колебания

1. Гармонический осциллятор

Колебаниями вообще называются движения, повторяющиеся во времени.

Если эти повторения следуют через равные промежутки времени, т.е. x(t+T)=x(t), то колебания называются периодическими . Система, совершающая

колебания, называется осциллятором . Колебания, которые совершает система, предоставленная самой себе, называются собственными, а частота колебаний в этом случае -- собственной частотой .

Гармоническими колебаниями называются колебания, происходящие по закону sin или cos. Например,

x(t)=A cos(t+ 0),

где x(t) -- смещение частицы от положения равновесия, A -- максимальное

смещение или амплитуда , t+ 0 -- фаза колебаний,  0 -- начальная фаза (при t=0), -- циклическая частота , -- просто частота колебаний.

Система, совершающая гармонические колебания, называется гармоническим осциллятором. Существенно, что амплитуда и частота гармонических колебаний постоянны и не зависят друг от друга.

Условия возникновения гармонических колебаний :на частицу (или систему частиц) должна действовать сила или момент сил, пропорциональные смещению частицы из положения равновесия и

стремящиеся вернуть ее в положение равновесия. Такая сила (или момент сил)

называется квазиупругой ; она имеет вид , где k называется квазижесткостью.

В частности это может быть и просто упругая сила, приводящая в колебания пружинный маятник, колеблющийся вдоль оси x. Уравнение движения такого маятника имеет вид:

или ,

где введено обозначение .

Непосредственной подстановкой нетрудно убедиться, что решением уравнения

является функция

x=A cos( 0 t+ 0),

где A и  0 -- постоянные величины , для определения которых следует задать два начальных условия : положение x(0)=x 0 частицы и ее скорость v х (0)=v 0 в начальный (нулевой) момент времени.

Это уравнение представляет собою динамическое уравнение любых

гармонических колебаний с собственной частотой  0 . Для грузика на

пружинке период колебаний пружинного маятника

.

2. Физический и математический маятники

Физический маятник -- это любое физическое тело, совершающее

колебания вокруг оси, не проходящей через центр масс, в поле сил тяжести.

Для того, чтобы собственные колебания системы были гармоническим, необходимо, чтобы амплитуда этих колебаний была мала . Кстати, то же справедливо и для пружинки: F упр =-kx только для малых деформаций пружинки x.

Период колебаний определяется формулой:

.

Заметим, что квазиупругим здесь является момент силы тяжести

M я = - mgd , пропорциональный угловому отклонению .

Частным случаем физического маятника является математический маятник -- точечная масса, подвешенная на невесомой нерастяжимой нити длины l. Период малых колебаний математического маятника

3. Затухающие гармонические колебания

В реальной ситуации на осциллятор со стороны окружающей среды всегда действуют диссипативные силы (вязкого трения, сопротивления среды)

, которые замедляют движение. Уравнение движения тогда принимает вид:

.

Обозначая и , получаем динамическое уравнение собственных затухающих гармонических колебаний:

.

Как и в случае незатухающих колебаний, это общая форма уравнения.

При не слишком большом сопротивлении среды 

Функция представляет собою убывающую по экспоненте амплитуду колебаний. Это уменьшение амплитуды называется релаксацией (ослаблением) колебаний, а  называется коэффициентом затухания колебаний.

Время , за которое амплитуда колебаний уменьшается в e=2,71828 раз,

называется временем релаксации .

Кроме коэффициента затухания, вводится еще одна характеристика,

называемая логарифмическим декрементом затухания -- это натуральный

логарифм отношения амплитуд (или смещений) через период:

.

Частота собственных затухающих колебаний

зависит не только от величины квазиупругой силы и массы тела, но и от

сопротивления среды.

4. Сложение гармонических колебаний

Рассмотрим два случая такого сложения.

a) Осциллятор участвует в двух взаимно-перпендикулярных колебаниях.

В этом случае вдоль осей x и y действуют две квазиупругие силы. Тогда

Для того, чтобы найти траекторию осциллятора, следует исключить из этих уравнений время t.

Проще всего это сделать в случае кратных частот :

Где n и m -- целые числа.

В этом случае траекторией осциллятора будет некоторая замкнутая кривая, называемая фигурой Лиссажу .

Пример : частоты колебаний по x и y одинаковы ( 1 = 2 =), а разность фаз колебаний (для простоты положим  1 =0).

.

Отсюда находим: -- фигурой Лиссажу будет эллипс.

б) Осциллятор совершает колебания одного направления .

Пусть таких колебаний пока будет два; тогда

где и -- фазы колебаний.

Аналитически колебания складывать очень неудобно, особенно, когда их

не два, а несколько; поэтому обычно используется геометрический метод векторных диаграмм .

5. Вынужденные колебания

Вынужденные колебания возникают при действии на осциллятор

внешней периодической силы, изменяющейся по гармоническому закону

с частотой  вн: .

Динамическое уравнение вынужденных колебаний:

Для установившегося режима колебаний решением уравнения будет гармоническая функция:

где A -- амплитуда вынужденных колебаний, а  -- отставание по фазе

от вынуждающей силы.

Амплитуда установившихся вынужденных колебаний:

Отставание по фазе установившихся вынужденных колебаний от внешней

вынуждающей силы:

.

\hs Итак: установившиеся вынужденные колебания происходят

с постоянной, не зависящей от времени амплитудой, т.е. не затухают,

несмотря на сопротивление среды. Это объясняется тем, что работа

внешней силы идет на

увеличение механической энергии осциллятора и полностью компенсирует

ее убывание, происходящее из-за действия диссипативной силы сопротивления

6. Резонанс

Как видно из формулы, амплитуда вынужденных колебаний

А вн зависит от частоты внешней вынуждающей силы  вн. График этой зависимости называется резонансной кривой или амплитудно-частотной характеристикой осциллятора.

То значение частоты внешней силы, при котором амплитуда колебаний становится максимальной, называется резонансной частотой рез , а резкое возрастание амплитуды при  вн =  рез -- резонансом .

Условием резонанса будет условие экстремума функции А( вн):

.

Резонансная частота осциллятора определяется выражением:

.

При этом резонансное значение амплитуды вынужденных колебаний

Величина, характеризующая резонансный отклик системы, называется добротностью осциллятора.

Наоборот, при достаточно большом сопротивлении никакого резонанса наблюдаться не будет.

Основы специальной теории относительности. молекулярная

Лучшие статьи по теме