Медицинский сайт
  • Главная
  • Средства
  • Как соотносятся частоты основного тона и обертонов. Значение слова обертоны в словаре музыкальных терминов. Значение слова обертон

Как соотносятся частоты основного тона и обертонов. Значение слова обертоны в словаре музыкальных терминов. Значение слова обертон

Многие недоумевают: как так, что люди слышат что-то кроме человеческой речи, да еще некоторых звуков окружающего мира. Разбираемся для чего нужны разные звуки, особенно высокочастотные около 20кГц. Заодно не оставим в стороне обертона и гармоники, не забыв про самые низкие частоты.

Даже человек без музыкального слуха понимает, что гитара, изготовленная на мебельной фабрике лет 40 назад, не идет ни в какое сравнение с более-менее солидной свежей гитарой именитого бренда или мастеровой. И не смотря на то, что по факту ноты можно сыграть одинаковые -- звук будет очевидно отличаться. Как и песню спеть известную могут не так мало людей, а вот как минимум не испортить - редкие люди: а вроде бы и не фальшивят так откровенно.

В жизни невозможно добиться звука только в 500Гц и все. Таких звуков нет. Почему? Дело в том, что . Выясняется, что очень важно как похожий звук создается. Ведь многие люди могут иметь примерно одинаковый тон голоса, но тембральных отличий слишком много. Потому так трудно отыскать двух людей, чтобы не понять по голосу кто есть кто вживую.

Итак, вначале есть некая частота голоса человека или вибрация струны на гитаре (а зачастую далеко не один звук - а несколько). Затем воздух движется по горлу и рту, появляется отраженные звуки. Обычно это называют обертонами и сумма их и является собой тембральные отличия. Ведь многие музыкальные инструменты могут играть действительно одинаковые ноты, но звучит-то по-разному.

С точки зрения самого сигнала, часто в технической литературе можно увидеть слово не обертона -- а гармоники. Гармоники бывают первого, второго и т.д. порядков. Что это значит? Вот есть небезызвестная нота "ля" на фортепиано. Нажимают и 440Гц слышны. Но в этот же момент вторая гармоника как вниз так и вверх заставит ноты "ля" на октаву ниже -- ту же самую клавишу, но с похожим более высоким звуком -- слегка издавать звук: 880Гц и 220Гц. Умноженное уже на 3 -- гармоникой третьего порядка. А если нажать 2 ноты вместе, сыграв интервал, - будет еще увлекательнее все посчитать.

Для обычного обывателя может быть знакомо слово "гармонические искажения" как характеристика аппаратуры. Это что-то близкое. Итак, вот есть человеческий голос. И за счет гармоник/обертонов получается отличить, детализировать любой голос. Это крайне полезно для восприятия деталей. А теперь еще и вспоминаем, что звуки часто отражаются от стен и домов, имеют свои законы распространения в пространстве. И получается, для того, чтобы услышать человека и понять его -- нужно очень много факторов учесть. И все эти факторы находят не только на частотах от 125Гц до 4кГц как принято считать за речевой диапазон --- а порой даже за 20кГц.

Если взять да сгенерировать с помощью колонки звук (синусоиду) даже в 14кГц сам по себе -- он будет крайне неинформативным. Но как только убрать из записи звуки свыше 14кГц -- сразу появляется ощущение того, что музыку слушаешь не ты сам -- а сосед через стенку. Высокие частоты дают ощущение присутствия бонусом. Можно поэкспериментировать вырезая определенные частоты и узнать где что изменяется.

Как только кто-то не слышит уже свыше 17кГц -- то пропала пятая гармоника, потом четвертая. С пропажей каждой следующей становится все менее ясно слышно, менее четко, крайне скудная детализация. А ведь есть ноты и около 10кГц и это значит, что чуть ли не первая гармоника уже может выйти за границы восприятия человека. Особенно это критично, когда в один момент звучит много нот, как это часто бывает в жизни. Скажем, говорить возле кипящего чайника или работающей микроволновки - это уже целая задача по обработке получаемого сигнала мозгом.

Но что только про высокие частоты вспоминать. Стоит подумать и про низкие. Ведь обертона есть и там. И если что-то слышать громкое и мощное, близкое -- то там эти частоты есть (низкие частоты крайне плохо распространяются на далекие расстояния, не в пример высоким). Но при проверке слуха часто совсем низкие частоты игнорируются -- начинаются замеры едва ли от 125Гц. И тут точно также могут пропасть обертона и произойдет пропажа деталей, который так нужны.

Вначале человеческий мозг едва осваивается с уймой деталей, который слышны маленькому ребенку. Затем привыкает и легко может использовать разные детали. Но как только слухом долгое время не пользуются -- начинается падения. И вместо недостающих звуковых деталей -- мысли. А потом еще и .

Кто-то может подумать, что выше 16кГц ничего полезного нет, да и многие же не слышат. А на самом деле просто отказывают от чувствительности. И раз широкий диапазон изначально есть у человека -- мозг будет его требовать неустанно. Не самими звуками -- так заменителями, имитаторами: мыслями.

Сами очень высокочастотные звуки или крайне низкочастотные не имеют смысла, да и слышать их может быть не очень приятно -- но они являются неотъемлемой частью всех звуков. Категорически нельзя их выкинуть -- и чтобы ничего не поменялось к худшему. Потому, одним из ярких сигналов плохо слышимых высоких звуков - невозможность услышать с далёкого расстояния что-то нужное и шепот. И ровно также нелепо звучит заявление о том, что низкочастотная колонка не нужна для каких-то стилей музыки.

Posts from This Journal by “Слух” Tag

  • Даже имея очень солидное падение слуха -- всё равно слышно каждый день не так мало звуков. И возникает вопрос: а где внимание человека? Очень…

  • Слуховые аппараты прекрасно наложились на опыт жизни людей до их изобретения: если слышно плохо -- то надо услышать хотя бы самое нужное, яркое.…

  • Постоянно все уверяют, что нужно просто взять и сделать все звуки громче -- вот и решение всех проблем для тугоухого. Увы, так работать не может. И…

  • Аудиометрия -- это самый базовый "анализ", самая очевидная и нужная проверка слуха. И всем сразу же кажется, что раз это медицинская…

ОБЕРТОНЫ

(нем. oberton , от ober - верхний и тон) - входящие в состав звука частичные тоны, кроме основного тона; иначе - составляющие сложного звукового колебания, выделенные при его анализе и имеющие более высокие частоты, чем основная составляющая (обладающая наименьшей частотой). состав обертонов сложного звука определяет его качественную окраску, или тембр.

Словарь музыкальных терминов. 2012

Смотрите еще толкования, синонимы, значения слова и что такое ОБЕРТОНЫ в русском языке в словарях, энциклопедиях и справочниках:

  • ОБЕРТОНЫ
  • ОБЕРТОНЫ в Энциклопедическом словаре Брокгауза и Евфрона:
    Обертоны (Obertone, Les harmoniques) - так называются высшиегармонические тоны, сопровождающие основной тон и обусловливающие собоютак назыв. оттенок или тембр звука. …
  • ОБЕРТОНЫ в Современном энциклопедическом словаре:
  • ОБЕРТОНЫ в Энциклопедическом словарике:
    призвуки (частичные тоны), имеющиеся в спектре музыкального звука. Звучат выше и слабее основного тона, слитно с ним и на слух …
  • ОБЕРТОНЫ в Большом российском энциклопедическом словаре:
    ОБЕРТ́ОНЫ, призвуки (частичные тоны), имеющиеся в спектре муз. звуков. Звучат выше и слабее осн. тона, слитно с ним и на …
  • ОБЕРТОНЫ в Энциклопедии Брокгауза и Ефрона:
    (Oberto ne, Les harmoniques) ? так называются высшие гармонические тоны, сопровождающие основной тон и обуславливающие собою так называемый оттенок или …
  • ОБЕРТОНЫ в Новом словаре иностранных слов:
    (нем. obertone) ряд дополнительных тонов, возникающих при звучании основного тона (и звучащих выше его), придающих звуку особый оттенок или …
  • ОБЕРТОНЫ в Словаре иностранных выражений:
    [нем. obertone] ряд дополнительных тонов, возникающих при звучании основного тона (и звучащих выше его), придающих звуку особый оттенок или тембр, …
  • ОБЕРТОНЫ в Современном толковом словаре, БСЭ:
    в музыке призвуки (частичные тоны), имеющиеся в спектре музыкальных звуков. Звучат выше и слабее основного тона, слитно с ним и …
  • ОБЕРТОНЫ ПСИХИЧЕСКИЕ в Толковом словаре психиатрических терминов:
    (нем. Оbеrtопе - дополнительные тона, возникающие при звучании основного тона). Промежуточные психические процессы, представляющие собой переход между сознанием и …
  • АНТОН ВЕБЕРН в Цитатнике Wiki:
    Data: 2007-07-17 Time: 23:37:54 , также Антон фон Веберн (нем. Anton Webern или Anton von Webern , 3 декабря, 1883, …
  • ЭОЛОВА АРФА в Православной энциклопедии Древо:
    Открытая православная энциклопедия "ДРЕВО". Эолова арфа (по имени древнегреческого бога ветров Эола) - музыкальный инструмент. Струны (9-13), настроенные в …
  • ПОПРИЩИН в Литературной энциклопедии:
    - герой повести Н.В.Гоголя «Записки сумасшедшего» (1834). Реальным источником образа П. в известной мере является сам Гоголь. Во время учебы …
  • ЛОЛИТА в Литературной энциклопедии:
    - героиня романа В.В.Набокова «Лолита» (1947 - английский оригинал, 1955 - русский вариант). Короткая история Л. возникает из покаянной исповеди …
  • ЭОЛОВА АРФА в Большом энциклопедическом словаре:
    (по имени бога ветров Эола) музыкальный инструмент. Струны (9-13), настроенные в унисон и колеблемые движением воздуха, издают обертоны одного общего …
  • ТЕМБР в Большом энциклопедическом словаре:
    (франц. timbre) ..1) в фонетике - окраска звука, определяемая положением формант в частотном спектре звука...2) В музыке - качество звука …
  • НАТУРАЛЬНЫЙ ЗВУКОРЯД в Большом энциклопедическом словаре:
    в музыкальной акустике - ряд звуков, состоящий из основного тона и гармонических призвуков (обертонов). Отношения частот колебаний звуков натурального звукоряда …
  • ЭОЛОВА АРФА
    арфа (от Эол, в древнегреческой мифологии - повелитель ветров), воздушная арфа, 1) струнный музыкальный инструмент. Состоит из служащего резонатором …
  • ЭЛЕКТРОМУЗЫКАЛЬНЫЕ ИНСТРУМЕНТЫ в Большой советской энциклопедии, БСЭ:
    инструменты, музыкальные инструменты, в которых создаются управляемые исполнителем электрические колебания, возбуждающие громкоговоритель. Источником таких колебаний служит генератор того или иного …
  • ЧАСТИЧНЫЕ ТОНЫ в Большой советской энциклопедии, БСЭ:
    тоны, гармоники, входящие в состав звука тоны, возникающие от колебания всего звучащего тела (основной тон, который называется также 1-й Ч. …
  • ТЕМБР в Большой советской энциклопедии, БСЭ:
    (франц. timbre), качество звука (его "окраска", "характер"), которое позволяет различать звуки одной и той же высоты, исполняемые на различных инструментах …
  • НАТУРАЛЬНЫЙ ЗВУКОРЯД в Большой советской энциклопедии, БСЭ:
    звукоряд, в музыкальной акустике ряд расположенных в восходящем порядке обертонов или частичных тонов, т. е. призвуков основного тона. Соотношение частоты …

Обертон звука – его составная часть. Колебания высоких частот сливающиеся в один звук с основным тоном называют обертонами. Обертоны лучше один раз услышать.

Обычно они возникают в двух случаях: фильтруются из более сложного и синтезируются из простого:

  • Обертоны фильтруются из более сложного по спектру шума. Представьте себя между двумя зеркалами, ваши отражения повторятся на равных расстояниях друг от друга. Звук так же встречает свои отражения внутри трубки или струны. Только в отличие от Вас, звук длинный. За одну секунду он успевает растянуться на 330-340 метров. А если он тянется несколько секунд. Где ему поместиться между своими отражениями? Он начинает сам с собой складываться. Если каждая впадина, и каждый гребень волны точно совпадет со своим отражением, то звук усилит сам себя. Если нет, то звук сам себя погасит. Получается фильтр, который оставит те звуки, длина волны которых укладывается между «зеркалами» целое число раз. Послушайте как будут звучать тон 100 Гц (звук такой частоты возникнет при расстоянии примерно в 3,4 метра) и его обертоны.

Волна укладывается между отражающими поверхностями 1 раз:

Звук частотой 100 Гц (колебаний в секунду) — основной тон:

Волна укладывается между отражающими поверхностями 2 раза:

Звук частотой 200 Гц — 2 гармоника (так называемый октавный обертон):

Основной тон 100 Гц вместе с обертоном 200 Гц. Слышен один более светлый звук, а не два звука:

Звук частотой 300 Гц — 3 гармоника (так называемый квинтовый обертон):

Основной тон 100 Гц вместе с обертонами 200 и 300 Гц. Слышен один более светлый звук, а не три звука:

Звук частотой 400 Гц — 4 гармоника (так называемый двухоктавный обертон):

Основной тон 100 Гц сливается с обертонами 200, 300 и 400 Гц. Слышен один более светлый звук, а не четыре звука:

Звук частотой 500 Гц — 5 гармоника (так называемый терцовый обертон):

Основной тон 100 Гц сливается с обертонами 200, 300, 400 и 500 Гц. Слышен один более светлый звук, а не пять:

Сколько бы звуков не добавилось, если их частоты в целое число раз больше основного тона, они не будут слышны отдельно, а будут только осветлять основной тон. Более того, наш слух на столько привык именно благодаря обертонам слышать основной тон, что продолжает его слышать, даже если его уже совсем нет.

Вспомним, как звучит чистый тон частотой 100 Гц:

Сравним со звучанием его обертонов 200 + 300 + 400 + 500 Гц.

Кажется, что это один и тот же звук, только первый более мягкий, а второй более резкий по тембру. В реальности эти наборы частот не пересекаются по спектру:

  • Синтезируются из более простого звука. Представьте гирю на пружине. Если гиря массой один килограмм растягивает пружину на некоторое расстояние, а гиря в несколько раз массивнее растягивает пружину в те же несколько раз сильнее, то такую пружину можно назвать пружиной с линейной характеристикой зависимости растяжения от приложенной силы. Линейная пружина встречается только в учебнике по физике. Реальные пружины нелинейные. Если простой звук пропустить через нелинейное устройство, то в нем появятся нелинейные искажения. А так как воздух и все предметы в какой-то степени являются пружинами, то неискаженного звука практически не бывает. Эти искажения так же являются обертонами.

Спектр чистого тона 100 Гц до искажений:

Внесенные искажения в виде графика, где величина звукового давления исходного сигнала отложена по горизонтальной оси, а искаженного — по вертикальной.

Спецификой искажений, график которых симметричен относительно центра координат является отсутствие четных гармоник (обертонов). Это видно в приведенном ниже примере.

Видны новые синтезированные искажениями обертоны:

Звучит это следующим образом:

Исходный чистый тон 100 Гц:

Искаженный сигнал с новыми гармониками 300, 500, 700, 900 и т. д. Гц:

Изменение формы волны:

А так выглядит сама волна до и после искажения:

Отличительной чертой гармоник является их частота. Она всегда в целое число раз больше частоты колебаний основного тона. То есть, для звука с частотой 1000 Гц (колебаний в секунду), частоты гармоник будут составлять 2000 Гц, 3000 Гц, 4000 Гц и т. д.

Обертоны можно услышать на струнных инструментах (гитаре, скрипке и т. п.), приглушив основной тон пальцем. Даже существует такой исполнительский прием игры, который называется флажолет.

Для того чтобы услышать четные обертоны (второй, четвертый, шестой и т. д.) нужно в момент извлечения звука прикоснуться (не прижать к грифу) к струне точно в ее середине, приглушив основной тон и нечетные обертоны. На гитаре центр струны располагается точно над 12-м ладом.

Если приглушить колебания в точке расположенной на 1/3 длины струны (над 7 ладом гитары), то можно услышать 3-й, 6-й, 9-й и т. д. обертоны.

Если на рояле беззвучно нажать одну из клавиш, то можно услышать отзвуки обертонов после коротких резких ударов по другим клавишам. Отзвук будет не от всех нот, а только от тех, частоты которых ровно в 2, 3, 4 и т. п. раз больше беззвучно нажатой:

В примере слышны отзвуки обертонов после 2, 4, и 6 звуков.

В заключении следует отметить, что, хотя слова обертон и гармоника — синонимы, но изредка встречается выражение «негармонический обертон». Поэтому, точнее будет гармониками называть именно гармонические обертоны, а под «негармоническими обертонами» следует понимать призвуки с частотами не кратными основному тону.

Тон 100 Гц с гармоническими обертонами 200 и 300 Гц:

Тон 100 Гц с негармоническими призвуками 217 и 282 Гц.

Музыкального звука; высота обертонов выше основного тона (отсюда название). Наличие обертонов обусловлено сложной картиной колебаний звучащего тела (струны , столба воздуха, мембраны, голосовых связок и т. д.): частоты обертонов соответствуют частотам колебания его частей.

Обертоны бывают гармоническими и негармоническими. Частоты гармонических обертонов кратны частоте основного тона (гармонические обертоны вместе с основным тоном также называются гармониками ); в реальных физических ситуациях (например, при колебаниях массивной и жесткой струны) частоты обертонов могут заметно отклоняться от величин, кратных частоте основного тона - такие обертоны называются негармоническими. Присутствие негармонических обертонов в колебаниях струн музыкальных инструментов приводит к феномену неточного равенства между рассчитанными частотами равномерно темперированного строя и реальными частотами правильно настроенного фортепиано (см. Кривые Рейлсбека).

Ввиду исключительной важности для музыки именно гармонических обертонов (и относительной малозначимости негармонических ) вместо «гармонический обертон» в музыкально-теоретической (но не в физической) литературе часто пишут «обертон» без каких-либо уточнений.

Обертон может быть колебанием частей звучащего тела, выраженных как аликвотными дробями (1 / 2 , 1 / 3 , 1 / 4 и т. д.), так и неаликвотными (например, при колебании звучащего элемента ударного инструмента с неопределённой высотой звука, такого как там-там). Количество и характер обертонов влияют на тембр инструмента. Каждый обертон имеет порядковый номер, обозначающий, какая часть струны колеблется. Звукоряд, состоящий из основного тона и его гармонических обертонов, называется Натуральным (обертоновым) звукорядом .

Начальные 10 обертонов прослушиваются по высоте и сливаются друг с другом в аккорды. Остальные прослушиваются плохо или не прослушиваются вообще.

Использование обертонов в музыке

Обертоны (как гармонические, так и негармонические) стали основным звуковым материалом для ряда экспериментальных сочинений (чаще электронных «реализаций») последней трети XX века , обобщённо именуемых тембральной, или спектральной музыкой .

Напишите отзыв о статье "Обертон"

Отрывок, характеризующий Обертон

– Я об одном не перестаю молить Бога, mon cousin, – отвечала она, – чтоб он помиловал его и дал бы его прекрасной душе спокойно покинуть эту…
– Да, это так, – нетерпеливо продолжал князь Василий, потирая лысину и опять с злобой придвигая к себе отодвинутый столик, – но, наконец…наконец дело в том, ты сама знаешь, что прошлою зимой граф написал завещание, по которому он всё имение, помимо прямых наследников и нас, отдавал Пьеру.
– Мало ли он писал завещаний! – спокойно сказала княжна. – Но Пьеру он не мог завещать. Пьер незаконный.
– Ma chere, – сказал вдруг князь Василий, прижав к себе столик, оживившись и начав говорить скорей, – но что, ежели письмо написано государю, и граф просит усыновить Пьера? Понимаешь, по заслугам графа его просьба будет уважена…
Княжна улыбнулась, как улыбаются люди, которые думают что знают дело больше, чем те, с кем разговаривают.
– Я тебе скажу больше, – продолжал князь Василий, хватая ее за руку, – письмо было написано, хотя и не отослано, и государь знал о нем. Вопрос только в том, уничтожено ли оно, или нет. Ежели нет, то как скоро всё кончится, – князь Василий вздохнул, давая этим понять, что он разумел под словами всё кончится, – и вскроют бумаги графа, завещание с письмом будет передано государю, и просьба его, наверно, будет уважена. Пьер, как законный сын, получит всё.
– А наша часть? – спросила княжна, иронически улыбаясь так, как будто всё, но только не это, могло случиться.
– Mais, ma pauvre Catiche, c"est clair, comme le jour. [Но, моя дорогая Катишь, это ясно, как день.] Он один тогда законный наследник всего, а вы не получите ни вот этого. Ты должна знать, моя милая, были ли написаны завещание и письмо, и уничтожены ли они. И ежели почему нибудь они забыты, то ты должна знать, где они, и найти их, потому что…
– Этого только недоставало! – перебила его княжна, сардонически улыбаясь и не изменяя выражения глаз. – Я женщина; по вашему мы все глупы; но я настолько знаю, что незаконный сын не может наследовать… Un batard, [Незаконный,] – прибавила она, полагая этим переводом окончательно показать князю его неосновательность.
– Как ты не понимаешь, наконец, Катишь! Ты так умна: как ты не понимаешь, – ежели граф написал письмо государю, в котором просит его признать сына законным, стало быть, Пьер уж будет не Пьер, а граф Безухой, и тогда он по завещанию получит всё? И ежели завещание с письмом не уничтожены, то тебе, кроме утешения, что ты была добродетельна et tout ce qui s"en suit, [и всего, что отсюда вытекает,] ничего не останется. Это верно.
– Я знаю, что завещание написано; но знаю тоже, что оно недействительно, и вы меня, кажется, считаете за совершенную дуру, mon cousin, – сказала княжна с тем выражением, с которым говорят женщины, полагающие, что они сказали нечто остроумное и оскорбительное.

Струна, оттянутая строго посередине, будет совершать колебания, показанные на рис. 8.3. Через каждые пол периода вся струна оказывается по разные стороны от положения равновесия. При этом на концах струны образуются узлы, а посередине - пучность смещений, так что на длине струны укладывается ровно половина длины волны (не звуковой, а поперечной волны в струне!). Частота таких колебаний и определяет высоту звука, создаваемого струной. Это так называемый основной тон струны.

Но это не единственная возможность. Можно возбудить и такие стоячие волны, при которых струна как бы разделяется на две, три и более части (рис. 2), каждая из которых колеблется с частотой, вдвое, втрое и т. д. большей, чем частота, соответствующая основному тону. Такие колебания тоже передаются окружающему воздуху и доходят до слушателя вместе с основным тоном. Называются они обертонами . Интенсивность звуков обертонов много меньше интенсивности основного звука, но обертоны как бы окрашивают звук основного тона, придают ему особое качество, называемое тембром. Он-то и позволяет отличить звук одного музыкального инструмента от другого. Зависит тембр от числа возбуждаемых обертонов и от их относительной интенсивности.

Колебания воздушного столба

В духовых музыкальных инструментах (различных трубах) источником звука является колеблющийся столб воздуха, в котором, как и в струне, возникают стоячие волны. Его колебания возбуждаются вдуванием воздуха через узкое отверстие на одном конце трубы. При таком вдувании возникает сжатие воздуха, что и дает начало колебаниям, а затем и волнам (аналогично оттягиванию струны). Правда, в отличие от струны, в воздушном столбе возникают не поперечные, а продольные упругие волны.

Труба может быть короткой или длинной, прямой или изогнутой. Другой ее конец может быть открытым или закрытым. Иногда вдуваемый воздух заставляет вибрировать тонкий упругий язычок, который передает колебания воздуху в трубе (кларнет), иногда вибрируют губы исполнителя, вызывая вибрации воздуха в трубе (корнет).

Высота звука здесь, как и в случае струны, зависит от линейных размеров. В открытой трубе основной тон возникает, когда на длине трубы укладывается 1/2 длины волны, а в закрытой - 1/4 длины волны (рис. 8.5). Высота тона зависит также от того, насколько сильно вдувается воздух, подобно тому как в струне она зависит от силы натяжения струны.

Наряду с основным тоном, в трубе возникают и обертоны с частотами, кратными основной частоте. При этом в открытой трубе возможны только такие обертоны, частоты которых представляют собой четные кратные частоте основного тона, а в закрытых трубах - нечетные кратные. Эти особенности связаны с тем, что на открытых концах трубы (а один из них всегда открытый) возможны только пучности смещений стоячей волны.

Музыкант может изменять действующую длину трубы, закрывая и открывая отверстия, сделанные вдоль трубы, с помощью клапанов или просто зажимая их пальцами (флейта, кларнет, дудка). В тромбоне, например, длина трубы, а вместе с тем и высота звука, изменяется с помощью скользящей U -образной приставки. В органе же длины труб неизменны, но зато число труб с самыми разными длинами чрезвычайно велико - до нескольких тысяч.

Оттянув струну посередине и отпустив, мы возбудим в ней колебание, изображенное на рис. 99, а. На концах струны получаются узлы, посередине - пучность.

С помощью этого прибора, меняя массу груза, натягивающего струну, и длину струны (перемещая добавочный зажим со стороны закрепленного конца), нетрудно экспериментально установить, чем определяется собственная частота колебания струны. Эти опыты показывают, что частота колебания струны прямо пропорциональна корню квадратному из силы натяженияструны и обратно пропорциональна длинеструны, т. е.

Что касается коэффициента пропорциональности, то он зависит, как оказывается, только от плотноститого материала, из которого сделана струна, и от толщины струны, а именно он равен. Таким образом, собственная частота колебаний струны выражается формулой

В струнных инструментах сила натяжения создается, конечно, но подвешиванием грузов, а растягиванием струны при накручивании одного из ее концов ни вращающийся стерженек (колок). Поворотом колка, т. е. изменением силы натяжения, осуществляется и настройка струны на требуемую частоту.

Поступим теперь следующим образом. Оттянем одну половинку струны вверх, а другую - вниз с таким расчетом, чтобы средняя точка струны не сместилась. Отпустив одновременно обе оттянутые точки струны (отстоящие от концов струны на четверть ее длины), мы увидим, что в струне возбудится колебание, имеющее, кроме двух узлов на концах, еще узел посередине (рис. 99, б) и, следовательно, две пучности. При таком свободном колебании звук струны получается в два раза выше (на октаву выше, как принято говорить в акустике), чем при предыдущем колебании с одной пучностью, т. е. частота равна теперь . Струна как бы разделилась на две более короткие струны, натяжение которых прежнее.

Можно возбудить далее колебание с двумя узлами, делящими струну на три равные части, т. е. колебание с тремя пучностями (рис. 99, в). Для этого нужно оттянуть струну в трех точках, как показано стрелками на рис. 99, в. Частота этого колебания равна . Оттягивая струну в нескольких точках, трудно получить колебания с еще большим числом узлов и пучностей, но такие колебания возможны. Их удается возбудить, например, проводя по струне смычком в том месте, где должна получиться пучность, и слегка придерживая пальцами ближайшие узловые точки. Такие свободные колебания с четырьмя, пятью пучностями и т. д. имеют частотыи т. д.

Итак, у струны имеется целый набор колебаний и соответственно целый набор собственных частот, кратных наиболее низкой частоте . Частотаназывается основной, колебание с частотойназывается основным тоном, а колебания с частотамии т. д.- обертонами (соответственно первым, вторым и т. д.).

В струнных музыкальных инструментах колебания струн возбуждаются либо щипком или рывком пластинкой (гитара, мандолина), либо ударом молоточка (рояль), либо смычком (скрипка, виолончель). Струны совершают при этом не одно какое-нибудь из собственных колебаний, а сразу несколько. Одной из причин того, почему разные инструменты обладают различным тембром, является как раз то, что обертоны, сопровождающие основное колебание струны, выражены у разных инструментов в неодинаковой степени. (Другие причины различия тембра связаны с устройством самого корпуса инструмента - его формой, размерами, жесткостью и т. п.)

Наличие целой совокупности собственных колебаний и соответствующей совокупности собственных частот свойственно всем упругим телам. Однако, в отличие от случая колебания струны, частоты обертонов, вообще говоря, не обязательно в целое число раз выше основной частоты.

На рис. 100 схематически показано, как колеблются при основном колебании и двух ближайших обертонах пластинка, зажатая в тиски, и камертон. Разумеется, на закрепленных местах всегда получаются узлы, а на свободных концах - наибольшие амплитуды. Чем выше обертон, тем больше число дополнительных узлов.

Рис.8.6. Свободные колебания на частоте основного тона и двух первых обертонов: а) пластинки, зажатой в тиски; б) камертона

Говоря ранее об одной собственной частоте упругих колебаний тепа, мы имели в виду его основную частоту и попросту умалчивали о существовании более высоких собственных частот. Впрочем, когда речь шла о колебаниях груза на пружинке или о крутильных колебаниях диска на проволоке, т. е. об упругих колебаниях систем, у которых почти вся масса сосредоточена в одном месте (груз, диск), а деформации и упругие силы - в другом (пружина, проволока), то для такого выделения основной частоты имелись все основания. Дело в том, что в таких случаях частоты обертонов, начиная уже с первого, во много раз выше основной частоты, и поэтому в опытах с основным колебанием обертоны практически не проявляются.

Лучшие статьи по теме